If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(x^2+1x)=0
We multiply parentheses
7x^2+7x=0
a = 7; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·7·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*7}=\frac{0}{14} =0 $
| -3=3^2-4x | | x-11/4=31/2 | | 2q=86 | | 2(x+3)=7x–2 | | x+51/6=72/6 | | 2(x+3)=7x–2 | | (x+12)°+7x°=180° | | 22=-1(t-+11) | | 22=-1(t-+11) | | 16x+79x+5=180 | | 64x^+16x+1=0 | | 22=-1(t-+1) | | 5x=180-75=105 | | c-7=17 | | (-5i)(3i)=0 | | 16-p=20 | | 7+2(x-1)=3x+2 | | 2x-0.67(6x+9)-8=-24 | | 0.2x+2.1=4.6 | | 2=2^2-4x | | x+16.87=9.3 | | 8x-13+5x-1=180 | | 12032x=720 | | 7/20(x)=21 | | 16y=64y= | | 95/20=162/c | | 25/40(x)=50 | | 95/20=c/162 | | x/50=3 | | x/6+14=23 | | 3/5(x)=3 | | 1/21x−6/7=2/3 |